ANN in JustNN

Prof. Raffaella Folgieri

Laurea magistrale in Filosofia

JustNN

- Tool per creare reti neurali che non ha bisogno di programmazione
- Flessibile, immediato e con possibilità di interrogazioni
- Fornisce aiuto per ottimizzare la rete e scegliere il numero adeguato di nodi
- Possibilità di importare dati (txt, xls)
- Download qui: <u>http://justnn.com/</u>
- Anche versione «plus» a pagamento (scontata per studenti): <u>http://www.easynn.com/</u>

• Barra dei bottoni. Ripropone i comandi presenti anche nei menu.

• Foglio dati

🕸 JustNN - [I	xor.tvq]	and the second se	-				1.1				
🎉 <u>F</u> ile <u>E</u> d	it <u>V</u> iew <u>Z</u> oon	n <u>D</u> efaults <u>I</u> n	nsert <u>A</u> ction <u>(</u>	Query <u>T</u> idy <u>V</u>	<u>(</u> indow <u>H</u> elp						
0 🗳	B		• 6	<u>></u>		Ø, →		Q *	↓ ₀ ⊼ ₀	<u>*</u> Q	< 🛛
	Input A	nput B	Output X Vie	w grid							
Query	false	lialse	false								
<u>T:1</u> 2	false	false	false								
T:2	false	true	tru 3								
T:3	true	false	tru								
T:4	true	true	false								
							1 2	Column n Row nam	ames (n es (nom	omi o nu i o numer	meri) i)
							3	Cell value	s ((inter	i, reali, bo	ooleani o testi)

Vista Network

• **Input Importance** mostra l'importanza di ogni colonna di Input, ovvero la somma dei pesi assoluti delle connessioni dal nodo di imput a tutti I nodi del primo livello nascosto. Gli input sono mostrati in ordine decrescente di importanza.

Diggers.tvq 154 cycles. Target error 0.0100 Average training error 0.009960 The first 6 of 6 Inputs in descending order.							
Column	Input Name	Importance	Relative Importance				
1 0 3 2 5 4	Spades Diggers Temp Diameter % Clay % Rocks	8.2193987453 6.9888917719 5.2355453725 4.0235427629 2.2157616254 0.7339824996					

• **Learning Progress** mostra il progresso della rete nell'apprendimento. La linea rossa è relativa all'errore massimo, la blu al minimo e la verde rappresenta la media. La linea arancione è la media dell'errore di validazione.

- Creeremo una ANN per lo XOR, seguendo esempi e dati messi a disposizione, proprio per chi comincia, da JustNN.
- Occorre avviare JustNN e seguire i passi proposti dal primo esercizio cui si accede con GETTING START dalla dialog «Tips» che compare all'avvio

Did you kno)w
JustNN can proc importing TXT, C 'File > Import'	luce new Grids or add Example Rows by SV, XLS, BMP or binary files. 'File > New'
	<u>G</u> etting Started
☑ Show Tips at Start	<u>N</u> ext Tip <u>C</u> lose

- Ricordiamo che lo XOR (OR esclusivo) è un operatore logico il cui risultato è VERO se uno degli input (ma NON entrambi) è VERO. Se gli input sono entrambi veri, l'output è falso.
- Aprite il file **xor.tvq** nella cartella **\JustNN\Samples**. Il file contiene già tutti i dati.
- Le colonne o le righe si selezionano con un click del mouse sull'intestazione.
- Il valore di input (riga QUERY) può essere cambiato da vero a falso o viceversa, utilizzando i bottoni 'Query > Increase' e 'Query > Max' o 'Query > Decrease' e 'Query > Min' sulla toolbar. L'output non cambia perché la rete non è ancora stata addestrata
- Per avviare l'addestramento della rete, basta selezionare Action > Start Learning o fare click sulla freccia verde sulla barra dei bottoni
- L'addestramento, in questo caso, durerà una frazione di secondo.
- Provate ora a cambiare i valori degli input (sulla riga QUERY) e vedrete che stavolta i risultati cambiano (perché la rete è stata addestrata).

- Impareremo come inserire i dati in una griglia.
- Apriamo ora il file Clr Circle.tvq nella cartella \JustNN\Samples.
- Nella griglia che compare alcuni dati sono già presenti. Altri dovremo inserirli (dove vedete il punto interrogativo).

🕸 JustNN - [Cl	r Circle.tvq]	-				-	
🎉 <u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>Z</u> oom	<u>D</u> efaults <u>I</u> ns	ert <u>A</u> ction <u>Q</u>	<u>)</u> uery <u>T</u> idy <u>W</u>	<u>/</u> indow <u>H</u> elp		
D 🖻	🖻 🖬 🔤	1 × @	• •	*)
	Red	Green	Blue	Yellow	Cyan	Magenta	
Pair 1	1.0000	1.0000	0.0000	true	false	false	
Pair 2	0.0000	1.0000	1.0000	false	true	false	
Pair 3	1.0000	0.0000	?	false	?	true	

- Doppio click sulla cella all'incrocio tra **Pair3** e **Blue** oppure click singolo e scrivere **1**. Compare la dialog box con il valore impostato. Diamo OK.
- Stessa cosa con la cella all'incrocio tra Pair3 e Cyan. In questo caso basta scrivere f.

 ^(CIr Circle.tvg)
- La griglia è completa

0 🖨	🖻 🔒	I X I	b R		r 📐 🕅		A III	† Q °↑	4	
	Red	Green	Blue	Yellow	Cyan	Magenta				
Pair 1	1.0000	1.0000	0.0000	true	false	false				
air 2	0.0000	1.0000	1.0000	false	true	false				
Pair 3	1.0000	0.0000	2	false	?	true	0 97			
	1	Edit Grid		1.000		×				
		1								
		[Min: 0, Max: 1] scaled [0, 1] = 0.5								
		Example row-								
		Pair 3 © <u>T</u> raining C Validating C Querying C Exclude								
		_ <u>Input/Outp</u>								
		Blue								
		€ <u>R</u> ea	al C Intege	r C Bool	C Text C	Image				
		@ Inpu	ıt	C <u>O</u> utput	C	Exclude				
				ОК	7					

- Scegliere dal menu Action > New Network e nella dialog che compare avremo dati già impostati correttamente (JustNN aiuta determinando i parametri ottimali)
- Click su OK.

New Network	×
Growth rate	
Change every 10 cycles or 5 seconds OK	Cancel
Input layer Hidden layers	Output layer
Created with Grow layer number 1 🔽 2 🗖 3	Created with
from minimum nodes 3 2 2	connected to
grid inputs to maximum nodes 4 3 3	grid outputs

- La dialog presenta già i valori ottimali. Comunque la rete può aver bisogno di molto tempo per apprendere e potrebbe fornire pochi risultati in fase di test. Una rete neurale migliore si può ottenere selezionando 1 per grow layer number e permettendo così a JustNN di determinare il numero ottimo di nodi e connessioni. Raramente è necessario avere più di un livello di nodi nascosti, ma JustNN (selezionando 2 o 3) ne può generare anche più di uno.
- Ogni volta che il periodo di cicli o secondi finisce, JustNN genera una nuova rete neurale differente dalla precedente, salvando, alla fine, la migliore.

- La dialog New Network permette di creare la rete ottimale per la griglia di valori. Ogni rete è sottoposta a training per un breve periodo e viene selezionata la rete che produce l'errore più piccolo in fase di validazione del training.
- All'Ok compare un messaggio con un riepilogo delle caratteristiche della rete creata.
- Click su "Sì" nelle finestre che compaiono.

- Quando viene creata una NN, JustNN imposta i valori in modo ottimale in base al contenuto della griglia. Tutti I controlli che permettono queste impostazioni sono contenuti della **Control dialog**.
- Il **Learning Rate** è impostato a 0.6 e può essere cambiato con ogni valore da 0.1 a 10. Valori molto bassi faranno sì che la rete apprenda in modo lento e valori al di sopra di 1.5 spesso causeranno oscillazioni o risultati errati.
- Con un click su **Optimize**, JustNN determinerà automaticamente il learning rate adeguato, provando (in modo trasparente all'utente) vari valori per qualche ciclo.
- Check **Decay** per ridurre automaticamente il learning rate durante l'apprendimento se si verificano apprendimento sbagliato o oscillazioni.

Controls	×				
Learning	Target error stops				
Learning rate 0.6 🗆 Decay 🗆 Optimize	Stop when A⊻erage error is below				
Momentum 0.8 🗖 Decay 🗖 Optimize	or C stop when <u>All errors</u> are below				
Validating	_ Validating stops				
Cycles <u>b</u> efore first validating cycle 100	\Box Stop when 100 % of the validating examples				
Cycles per validating cycle 100	are C <u>W</u> ithin 10 % of desired outputs				
Select 0 examples at random from the	or ⓒ <u>C</u> orrect after rounding				
Training examples = 3	Fixed period stops				
Slow learning	□ <u>S</u> top after 20.0000 seconds				
□ Delay learning cycles by 0 millisecs	☐ Stop <u>o</u> n 0 cycles				
	OK Cancel				

Prof. R. Folgieri – aa 2012/2013

- Il Momentum è impostato a 0.8 e può essere cambiato con ogni valore da 0 a 0.9. Check Optimize per permettere a JustNN di determinare automaticamente il momento. Check Decay per ridurre automaticamente il momento durante l'apprendimento se si verificano oscillazioni.
- Il **Target Error** è impostato a 0.01 e può essere cambiato con ogni valore da 0 a 0.9 ma i valori al di sopra di 0.2 di solito sotto-addestrano la rete. L'apprendimento si ferma quando la media degli errori è al di sotto dell'errore target.
- JustNN usa parte dei dati (in modo random) per addestrare la rete, e parte per la validazione. Si può indicare di fermare l'apprendimento quando il target è raggiunto (es. 100%, o indicando un range specifico da 0 a 50%)
- Il parametro **Slow learning** fa sì che l'apprendimento avvenga in modo più lento (più accurato?)

Controls	×			
Learning Learning rate 0.6 Decay Optimize Momentum 0.8 Decay Optimize	Target error stops			
Validating Cycles <u>b</u> efore first validating cycle 100 Cycles per validating cycle 100	✓alidating stops □ Stop when 100 % of the validating examples are C Within 10 % of desired outputs			
Training examples = 3	Fixed period stops			
Delay learning cycles by 0 millisecs	□ Stop <u>o</u> n 0 cycles OK Cancel			

- L'apprendimento è molto veloce e si ferma automaticamente.
- Click sul menu View > Network per vedere la ANN creata.
- Click su View>Grid per tornare alla griglia.
- Ora la griglia può accettare le query.

- L'esempio 3 tratta I dati relativi a corse di cavalli. Ogni cavallo ha delle caratteristiche (per riga) rilevate in gare differenti.
- Seguendo lo stesso procedimento adottato per gli esempi precedenti, si ottiene un modo per prevedere I risultati delle corse (ovviamente della popolazione, cioè dei cavalli, rappresentati).
- Stavolta per caricare il file useremo l'import
- 1. File > New per creare una griglia vuota
- File > Import per importare i dati da Races.txt nella directory
 \JustNN\Samples (I dati si possono importare anche da formati excel).
- 3. Selezionare nella dialog il delimitatore (es. TAB)
- 4. Indicare se le prime parole (è il nostro caso) contengono i nomi delle righe. Click su OK
- 5. Nella seconda dialog click su **Set names** per creare le colonne e andare avanti fino all'ultima (nel nostro caso sappiamo che è la 6) il cui tipo (Type) va cambiato in **Output** e click su OK.

- Menu Action > New Network tiper creare la ANN
- Click OK nella prima dialog che ormai conosciamo
- Al messaggio "Creating a network will reset learning" rispondere SI'
- Rispondere SI' anche al messaggio successivo
- Nella control dialog:
 - Check su Optimize sia per il Learning Rate che per il Momentum
 - Mettere 200 in "Select examples at random" per creare alcuni esempi di validazione (lo fa JustNN in modo random - casuale)
- Check "**Stop on cycle**" e mettere 1000. Poi click su OK
- Rispondere SI' per ottimizzare i controlli e SI' per avviare l'apprendimento
- Una volta finito l'apprendimento, menu View > Information per vedere I dettagli della rete.
- Click sul bottone **Refresh** per essere sicuri che i dettagli sono completi.
- Guardate i risultati di validazione: dal 50 all'80% i risultati "predicted" sono corretti.
- Chiudete la dialog informatio

- Menu Insert > Querying Example Row
- Se si apre la dialog '**Example Presets**' fate click su OK per impostare i valori a **unknown** (nella griglia appare '?').
- Immettete **Runners** e **Distance** per una gara.
- Selezionate la riga di query con un doppio click dove è scritto **Q:0** in rosso
- Ora menu Edit > Copy e poi Edit > Paste per creare una riga per ogni cavallo (facciamone 3). Vedrete in Win, I possibili vincitori. Se ce n'è uno solo, il risultato, ovviamente, è più certo!
- Nella cartella **\JustNN\Samples** troverete molti altri esempi.
- Inoltre nella pagina da cui avete scaricato il programma è presente un piccolo manuale di documenatazione.