ANN in JustNN how to...

Prof. Raffaella Folgieri

JustNN

- Tool to create Artificial Neural Networks.
 - -No coding, no programming languages.
 - -Flexible, powerful, allows queries
 - Help in optimizing the net and choosing the right number of nodes
 - Possibility to impot data (txt, xls)
 - Download here: <u>http://justnn.com/</u>
 - –Also a «plus» version (low cost for students): http://www.easynn.com/

• Data sheet

🕸 JustNN - [x	or.tvq]	100	-										
SEile Edit	t <u>V</u> iew <u>Z</u> oom	<u>D</u> efaults <u>I</u> n:	sert <u>A</u> ction <u>Q</u>	uery <u>T</u> idy <u>W</u> indov	v <u>H</u> elp								
			e 📗	 }•)) •	Ð, →	-	† Q	° ↑	↓ ₀ ↑	5 ¥	9 4 🛛	
	Input A	iput B	Output X(Viev	v grid									
Query	false	ralse	false										
<u>T:1</u> 2	false	false	falee	· · · · · · · · · · · · · · · · · · ·									
T:2	false	true	tru 3										
T:3	true	false	tru										
T:4	true	true	false										
				1	Colu Row	mn r nam	name les (r	es (na name	ame es c	es o or ni	r nu umb	imbers) ers)	
				3	Cell	value	əs (ir	ntege	er, r	eal,	bod	olean or t	text)

Network view

• **Input Importance** shows the importance of each input column (that is the sum of the absolute weight of the connection from the input node to all the nodes of the first hidden layer). The inputs are shown in descent order of importance

• **Learning Progress** show the progress of the net during the training (learning curve). The red line refers to the maximum error, the blu to the minimum error, the green represents the average. The orange line is the average of the validation error.

- We will see an ANN for the XOR problem, following examples and data at disposition in JustNN folder.
- Run JustNN and follow the proposed steps in GETTING START from the dialog «Tips»

Did you kno	Jw
JustNN can proc importing TXT, C 'File > Import'	duce new Grids or add Example Rows by SV, XLS, BMP or binary files. 'File > New'
	<u>G</u> etting Started
Show Tips at Start	<u>N</u> ext Tip <u>C</u> lose

- Remember that the logical operator XOR (eXclusive OR) returns TRUE if **only one of the input** is TRUE. If the Input are both TRUE, the output is FALSE.
- Open the file **xor.tvq** in the folder **\JustNN\Samples**. The file already contains all the data we need.
- Columns and rows can be selected with a mouse click on the title cell.
- The input value (the row QUERY) can be changed from true to false or viceversa, using buttons 'Query > Increase' and 'Query > Max' o 'Query > Decrease' e 'Query > Min' in the toolbar. The output does not change because the net has not been trained yet

- To start training, select Action > Start
 Learning or click on the green arrow on the button bar
- In this case the training will be very fast.
- Now try to change the input values (on the row QUERY) and you'll see that the results change (because the net has been trained)

- We'll learn how insert data in a grid.
- Open the file Clr Circle.tvq in the folder \JustNN\Samples.
- Some data are already present, but you need to insert values (where you see the question mark).

🕸 JustNN - [Cl	r Circle.tvq]	-				and in case
🎉 <u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>Z</u> oom	<u>D</u> efaults <u>I</u> ns	ert <u>A</u> ction <u>Q</u>	uery <u>T</u> idy <u>W</u>	<u>/</u> indow <u>H</u> elp	
D 🖻	🖻 🔒 🗍	l X Pe	C	*		
	Red	Green	Blue	Yellow	Cyan	Magenta
Pair 1	1.0000	1.0000	0.0000	true	false	false
Pair 2	0.0000	1.0000	1.0000	false	true	false
Pair 3	1.0000	0.0000	?	false	?	true

- Double click on the cell between **Pair3** and **Blue** (or single click and write **1**) You will see a dialog box with the value. Click OK.
- Do the same with the cell between Pair3 and Cyan. In this case we just need to write f.
- We completed the grid

U 🍃	B	Å l		 *** /		· ∅, →	-	'Q ↑ `
	Red	Green	Blue	Yellow	Cyan	Magenta		
air 1	1.0000	1.0000	0.0000	true	false	false	(
air 2	0.0000	1.0000	1.0000	false	true	false		
air 3	1.0000	0.0000	2	false	2	true	3	
		Edit Grid				×		
		Value						
		1	[Min: 0, M	1ax: 1] scaled [0	l, 1] = 0.5			
		<u>Example</u>	ow					
		Pair 3 • <u>T</u> raini	ng C Valid	lating C Qu	erying CE:	xclude		
		_Input/Outp	out column —					
		Blue						
		€ <u>R</u> ea	al C Intege	r C Bool (CText CI	mage		
		• Inpu	ıt	C <u>O</u> utput	C E	Exclude		
				01/	1			

 Select menu Action > New Network . In the dialog you will see all the paramenters correctly set by JustNN, automatically

(

Click OK.	New Network
	Growth rate
	Input layer Hidden layers
	Created with Grow layer number 1 Z 3 Created with 3 nodes from minimum nodes 3 2 2 3 nodes
	grid inputs to maximum nodes 4 3 3 grid outputs

 Anyway, the ANN could need a lot of time to learn from data and could give few results in the test phase.

- You can obtain a better ANN selecting the value 1 as grow layer number, allowing, in this way, to justNN to automatically detect the optimum number of nodes and connections. Only in really few cases, in fact, we could need more than one level of hidden nodes, but JustNN (selecting the values 2 or 3) can generate more levels.
- Every time the period of cicles or seconds ends, JustNN generates a new neural network different from the previous one, saving the best, at the end of the process.

New Network			×
Growth rate			
Change every	0 cycles or 5 seco	nds OK	Cancel
Input layer Created with 3 nodes connected to grid inputs	Hidden layers Grow layer number 1 🔽 from minimum nodes 3 to maximum nodes 4	2 🗆 <u>3</u> 🗖 2 2 3 3	Output layer Created with 3 nodes connected to grid outputs

- The dialog New Network allows to create an optimal net for our grid of values. Each net is trained for a short period and at the end JustNN selects the net producing the lowest error during the validation phase (the validation of the training).
- When you click Ok, you will see a message with a summary of the net's characteristics.
- Click "YES" in the following dialogs.

- When you create a NN, JustNN set the values to obtain the best net from data. All the controls allowing these setting are in the **Control dialog**.
- The Learning Rate is set to 0.6 and you can change it with every value in the interval going from 0.1 to 10. Low values will produce a slow learning , while values greater than 1.5 could cause oscillations of wrong results.

Controls	
Learning	Target error stops
Learning rate 0.6 🗖 Decay 🗖 Optimize	Stop when A⊻erage error is below
Momentum 0.8 □ Decay □ Optimize	or C stop when <u>A</u> ll errors are below
Validating	Validating stops
Cycles <u>b</u> efore first validating cycle 100	☐ Stop when 100 % of the validating examples
Cycles per validating cycle 100	are C Within 10 % of desired outputs
Select 0 examples at random from the	or <u>C</u>orrect after rounding
Training examples = 3	Fixed period stops
Slow learning	□ <u>S</u> top after 20.0000 seconds
□ Delay learning cycles by 0 millisecs	□ Stop <u>o</u> n 0 cycles
	OK Cancel

- If you click **Optimize**, JustNN will automatically set the right learning rate, trying several values for some cycle.
- Check **Decay** to automatically reduce the learning rate during the training if you have a wrong result or oscillations.

Controls	
Learning	Target error stops
Learning rate 💴 🗖 Decay 🗖 Optimize	Stop when Average error is below
Momentum 0.8 Decay Optimize	or C stop when <u>All errors are below</u>
Validating	Validating stops
Cycles <u>b</u> efore first validating cycle	□ Stop when 100 % of the validating examples
Cycles per validating cycle 100	are C <u>W</u> ithin 10 % of desired outputs
Select 0 examples at random from the	or <u>C</u>orrect after rounding
Training examples = 3	Fixed period stops
Slow learning	□ <u>S</u> top after 20.0000 seconds
□ Delay learning cycles by 0 millisecs	□ Stop <u>o</u> n 0 cycles
	OK Cancel

- Momentum is set to 0.8 and can be changed with a value from 0 to 0.9. Check Optimize to allow JustNN to automatically set the momentum. Check Decay if you want to automatically reduce the momentum during the learning if you have oscillations.
- The **Target Error** is set to 0.01 and can be changed with a value from 0 to 0.9 but values greater than 0.2 usually under-train the net. The learning process stops when the average of errors is lower than the target error.

Controls	
_ Learning	Target error stops
Learning rate 🚺 🗖 Decay 🗖 Optimize	Stop when Average error is below
Momentum 0.8 🗆 Decay 🗖 Optimize	or C stop when <u>All errors are below</u>
Validating	Validating stops
Cycles <u>b</u> efore first validating cycle 100	\Box Stop when 100 % of the validating examples
Cycles per validating cycle 100	are C Within 10 % of desired outputs
Select 0 examples at random from the	or ⓒ Correct after rounding
Training examples = 3	Fixed period stops
Slow learning	□ <u>S</u> top after 20.0000 seconds
□ Delay learning cycles by 0 millisecs	□ Stop <u>o</u> n 0 cycles
	OK Cancel

- JustNN uses part of the data (in a random way) to train the net, and part for the validation process. You can decide to stop the learning when the target is achieved (ex. 100% or indicating a specific range – from 0 to 50%)
- The parameter Slow learning allows a slower learning (more accurate?)

Controls	×
Learning	Target error stops
Learning rate 0.6 🗆 Decay 🗆 Optimize	Stop when A⊻erage error is below 0.01
Momentum 0.8 🗖 Decay 🗖 Optimize	or C stop when <u>All errors are below</u>
Validating	Validating stops
Cycles <u>b</u> efore first validating cycle 100	☐ Stop when 100 % of the validating examples
Cycles per validating cycle 100	are C <u>W</u> ithin 10 % of desired outputs
Select 0 examples at random from the	or ⓒ Correct after rounding
Training examples = 3	Fixed period stops
Slow learning	□ <u>S</u> top after 20.0000 seconds
Delay learning cycles by O millisecs	□ Stop <u>o</u> n 0 cycles
	OK Cancel

- The learning (traininng phase) is very fast and it automatically stops.
- Click on menu View > Network to see the ANN you have created.
- Click on **View>Grid** to visualize the grid.
- Now you can query the net from the grid.

- We will treat now data related to horses races. Every row shows the characteristics of a horse as collected in different races. Following the same procedure seen in the previous examples, we will obtain a way to predict the result of a horse in a race.
- We will use the function IMPORT for our data
- 1. Chose **File > New** to create an empty grid
- Now File > Import to import data from Races.txt in the directory
 \JustNN\Samples (remember that you can import data also from excel, if you need).
- 3. In the dialog, select the delimitation among columns (ex. TAB)
- 4. Now indicata if the first words (as in our case) contain the name of the rows of the grid.
- 5. Click OK
- In the second dialog box, click Set names to create the columns and go forward till the last one (in our case, we know that the last is the number 6)
- 7. When you are on the last column, remember to change the type) in **Output**
- 8. click OK.

- Now menu **Action > New Network** to create the ANN
- Click OK in the first dialog (we already know it)
- Answer YES to the message "Creating a network will reset learning"
- Answer YES also to the following message
- In the control dialog:
 - Check **Optimize** either for **Learning Rate** and for **Momentum**
 - Put 200 in "Select examples at random" to create some validation examples (randomly selected by JustNN)
- Check "Stop on cycle" and put the value 1000. Then click OK
- Answer YES to optimize the controls and YES to start the learning
- Once done the learning phase, select the menu item **View > Information** to see the details of our network.
- Click on the **Refresh** button to be sure that the details are all shown.
- Look at the validation results: from 50 to 80% the "predicted" results are correct.
- Close the information dialog

- Menu Insert > Querying Example Row
- If an 'Example Presets' dialog appears, click OK to set the values to unknown (you will see '?' in the grid).
- Set the values **Runners** and **Distance** for a race.
- Select the query row with a double click where you see Q:0 written in red
- Now chose from menu Edit > Copy and then Edit > Paste to create a row for each horse (for example 3). In WIN you will see the possible winners. Obviously, if you have only one horse, the result is more probable.
- In the folder \JustNN\Samples you will find many other examples.
- Moreover, in the page from which you downloaded JustNN there is a short user manual.

Useful concepts

- <u>https://en.wikibooks.org/wiki/Artificial Neura</u>
 <u>l Networks/Neural Network Basics#Moment</u>
 <u>um</u>
- A practical example:
- <u>https://www.facebook.com/quartznews/video</u>
 <u>s/1057379764295725/?fref=nf</u>

A simulation tool

- Alspace (<u>www.airspace.org</u>)
- Create a new ANN
- select 'Create New Graph' from the 'File' menu

Prof. R. Folgieri

Create the nodes

- left click on the blank white canvas to create a node
- when a button is clicked, the message panel above the canvas displays a message giving you information on of what you can do next

Solution Node Properties Dialog	×
Node name:	Node 0
ОК	Cancel

 In this case, in the dialog box, you can set the node name (ie the name of the input variable)

Connect the nodes

- After create the nodes, connect them
- the applet automatically detects whether a node is an input, output, or hidden node once you add

edges and connect your nodes together

Neural Applet Version 4.3.8 untitled.txt File Edit View Neural Ontions Help	
View/Edit Examples	
Create Solve Click on an entity to select or drag the mouse to select n	nultiple entities.
Node 0	
0.38 Node 3 0.2 -0.8	Node 5
Node 1 0.05 Node 4 0.25	-0.37
Node 2	
0.81	
0.81	

ргот. к. ногдіегі

Insert values

- Now we need the training set and the test set (control).
- Add examples to your training and test sets, by clicking View/Edit Examples.
- To add a new example, click on the Add New Example button. Add values.

Insert values

• Try with this values

OR

Set training and test examples

• Now select 'Select Percentage of Examples' on the training example side. Choose 50% of the training examples (Random or First or Last).

🕌 Select Data Examples 🛛 🗙								
Select Random 💌 50 % of the data								
OK Cancel								

Move the select record on the right using the arrows.

🕌 Edit Data :	Set Examples			×
Training Exam	ples (4)			Test Examples (0)
Node 0	Node 1	Node 2	Node 5	NO DATA
1: 0.0	0.0	0.0	0.0	
2: 1.0	0.0	0.0	0.0	
3: 0.0	0.0	1.0	0.0	→
4: 1.0	1.0	1.0	1.0	
				←
Add	New	temove	Edit Select % of Examples 💌	Add New Remove Edit Select None 🔻
				Close Window
				Prot. K. FC

Save the ANN

• This is what you will see

٤	dit Data Se	et Examples										×
Traini	ng Exampl	es (2)					Test E	xamples (2)				
N	ode 0	Node 1	Node 2	Node 5		Ì	No	de 0 1	Node 1	Node 2	Node 5	
1: 0	.0	0.0	0.0	0.0			1: 1.	0	0.0	0.0	0.0	
2: 0	.0	0.0	1.0	0.0			2: 1.	0	1.0	1.0	1.0	
						\rightarrow						
						-						
							I					
	Add N	lew Re	emove E	dit Select	% of Examples 💌			Add Ne	w Re	emove	Edit Select No	ne 💌
												Class Window
					🚳 Neural Applet Ver	rsion 4.3.8	u					Close willdow
	\mathbf{C}			NINI			-					
	Jdv	'e yo	our P		<u>File</u> Edit <u>V</u> iew N	eural Opt	ions					
		-			Create New Graph			🔮 Salva				×
					Load Sample Graph	and Data		Salva <u>i</u> n:	docume	nts	-	a 🗃 🗖 🔡 🗄
					Load Sample Data						- Class	
					Load Craph and Date	a From Fil		Dacku	p-settembre. m Office Tem	nlates 📑 Outloo	ok Files	
							le	i film		Visua	l Studio 2017	
					Load Data From File			📑 inetpu	b	🗋 colloq	uio e tesi Lud.docx	
					Load Graph and Data	a From <u>U</u> l	RL	📑 JustN	N	🗋 HP eP	Print	
					Load Data From URL	-		Medita	tion_Journal	🗋 testAl	NN.xml	
					Save Graph and Date	9		MyHer	itage			
					Save Graph and Date	a		Nome file:	testANN.xr	nl		
					Print			<u>T</u> ipo di file	: Tutti i file			-
					Quit							
												Salva Annulla

Prof. R. Folgieri

Run the ANN

- Go in the SOLVE tab.
- Click on Initialize Parameters to reset the learning (default, random values in the range [-1,1] to parameters).
- If you want to customize them, you can click on 'Parameter Initialization Options...' (Neural Options menu).

Run the ANN

- Nodes and edges may change colors corresponding to their values.
- 'Help' menu, click on 'Legend for Nodes/Edges' to show the legend.
- To modify the ANN, click on tab 'Create' to return to create mode

Backpropagation ANN

Three ways to perform backpropagation:

- 1. one step at a time \rightarrow click the **Step** button.
- 2. 50 steps at a time \rightarrow click the **Step 50X** button.
- Run the all the ANN steps till a preset minimum error is achieved (0.1 by default) → click the Step To Target Error button.

Try to see the difference in our ANN...

Message at the top of the network canvas: how many steps you have currently run and error for training and test examples. You can decide to stop.

Error Plot

- Click the **Show Plot** button.
- blue plot: training set error
- orange plot: test set error.
- You can see the error has been minimized.
- The plot window also shows:
 - Initialize Parameters, Step, Step X, Step to Target Error, Stop buttons.
 - are buttons to close, clear, and print the plot window and a checkbox to switch between logarithmic and standard display modes.

Error Plot

Calculate the output

- To get an output given a set of inputs, click the Calculate Output button and enter the desired inputs.
- The given inputs are NOT added to the test or training sets and do not affect the learning of the network in any way.

🕌 Calculate Output 🛛 🗙			
Input Values:			
Node 0			
Node 1			
Node 2			
Hidden Values:			
Node 3			
Node 4			
Output Values:			
Node 5			
Calculate	Cancel		

Try for some value. For example ->

🕌 Calculate Output 🛛 🗙							
Input Values:							
Node 0	0						
Node 1	0						
Node 2 0							
Hidden Values:							
Node 3	0.663						
Node 4	0.5229						
Output Values:							
Node 5	0.2224						
Calculate	Cancel						

Summary statistics

- Statistics for the test set:
 - all the test examples as a table, with the predicted value,
 - classified as correct or incorrect depending on a classification range determined by the user (a threshold, by defaults = 0.5),

– a percentage correct or incorrect.

 You can also select which output's predicted value is displayed in the table (if you have more than one output, of course).

Summary statistics

실 Te	st Results	s								×
Correctly Predicted Examples (1):										
Node 1.0	0	Node 0.0	1	Node 0.0	2	Node 0.0	5	Predicted 0.2232	Value	
Incorre	ectly Pre	dicted E	xample	s (1):						
Node	0	Node	1	Node	2	Node	5	Predicted	Value	
1.0		1.0		1.0		1.0		0.2429		
Input r	ange thr	eshold (of classi	fication	: 0.5					
Predic	ted Corr	ectly: 50)%							
Predic	Predicted Incorrectly: 50%									
Select	an outp	ut to ana	alyze:							
					1 N	ode 5				
	Close									

Load data, graph and preexisting ANNs

From menu FILE cre

Edit View Neural Options File Create New Graph Load Sample Graph and Data Load Sample Data Load Graph and Data From File Load Data From File Load Graph and Data From URL Load Data From URL Save Graph and Data Print Quit

 If you want to load data from a file, select LOAD DATA FROM FILE (comma-delimited data)

Load data, graph and preexisting ANNs

- You can also load a sample data file ('File' menu and select 'Load Sample Data').
- The Construction Wizard dialog will query you for information on the neural network you want to build:
 - -the number of hidden layers needed,
 - -the number of nodes for a specific hidden layer.
- The number of nodes default to 2.

Let's try

• Try with a sample dataset, for example with the dataset named HOLIDAYS

Meural Network Construction Wizard									
Filename: holiday.xml Create 1 hidden layers									
Hidden layer 1 🔻 has 2 nodes.									
Choose categories as outputs:									
Culture	ordered?								
Fly	Fly ordered?								
Hot	ordered?								
Music	ordered?								
Nature	ordered?								
✓ Likes	ordered?								
ОК	Cancel								

Dynamic outline

- Introduction
- Taxonomy
- Al fundamentals: Philosophy, History
- GOFAI vs modern AI
- Practical examples:
 - -Turing Test and Chatbots
 - -ANNs (machine learning)

 - -Ontologies (depending on the time)
 - Philosophy of AI & Ethic issues

Try a neural network

- To recognize drawing...
- Go to https://quickdraw.withgoogle.com/
- Select ENGLISH (bottom right popup menu)
- Follow the instructions...

Can a neural network learn to recognize doodling?

Help teach it by adding your drawings to the <u>world's</u> <u>largest doodling data set</u>, shared publicly to help with machine learning research.

Prof. R. Folgieri

See you next time...

Our neural net figured out 4 of your doodles. But it saw something else in the other 2. Select one to see what it saw, and visit the <u>data</u> to see 50 million drawings made by other real people on the internet.

Raffaella.Folgieri@unimi.it