

Computer skills advanced problem solving: other methodologies and representations

Prof. Raffaella FOLGIERI

DEMM, Department of Economics, Management and quantitative Methods

Topic 1

- Problem solving
 - Introduction
 - Simple and complex problems
 - Reasoning abilities
 - Problem solving in psychology
 - Different contexts
- Problem solving and decision making
 - Interrelations
 - Decision making techniques
- Well-conditioned problems
- The Pareto's principle

Problem solving in psychology

Behaviourism and problem solving

trial and errors

Gestalt psychology and problem solving

• an individual can find the solution of a problem through INSIGHT

Cognitivism and problem solving

continuous feedback individual-environment

Computational approach: the space of the problem

• Newell and Simon: *Problem Space* theory

Anderson and the ACT model

Reciprocal interconnection of 3 components:

- 1. Declarative memory
- 2. Procedural memory
- 3. Working memory

Decision making techniques:

chatchball

For group decisions

delphi

- For groups
- Expert panel geographically distant

Pareto's principle (or "rule 80/20")

Well-defined problem

• Enlarged Lasswell (5 W and 1 H:

Who? What? Where? When? Why?

How?)

Topic 2

- Creativity and Problem solving
 - Representations
 - example of applications

Brainstorming

- Collective intelligence
- Participants are encouraged to express ideas

Mental maps

- Many applications: communication, problem analysis, efficient presentations, learning
- Also useful to solve complex problems
- Many free software at disposition in the Internet

Topic 3

Many contact points between Problem Solving and Project Management

The seesaw metaphore

WELL-DEFINED project:

- objectives,
- context,
- constraints (boundaries),
- expectations,
- Involved/to-be-involved resources.
- Time

Problem solving in project management: many models

- USA defence
- The Murphy model (pharmaceutical PM)
- The spiral model
- The waterfall model

SWOT ANALYSIS

A matrix that examines:

- Strengths
- Weakness, concerning current and internal situation
- Opportunities
- Threats, from competitors or external factors

The what-if analysis

- The What-if analysis: current and forecast project status
 - Best and worst scenarios
 - Many IT tool at disposition
 - Also Excel

the S.Q.U.I.D. formula

- To verify information and to evaluate the project
- The S.Q.U.I.D. formula:
- Soon (subito): how much faster we answered to the requirements
- Quality (qualità) of the product and of the ideas
- Information (informazioni) that need to be given
- Date (data) in which we will deliver the results or end the project

The cause-effect diagram

Also called Fishbone or Ishikawa diagram

The Deming cycle

4 parts:

- PLAN: anticipate changes. Analyse and predict results.
- *DO*: execute the plan, through little steps in controlled circumstances.
- *STUDY* (control): study the results.
- ACT: act to standardize or improve the process.

8D methods

- 8D = 8 Disciplines
- Methodology to represent (and solve) problems about the improvement of products and processes
- Also known as Global 8D, Ford 8D or TOPS 8D

Algorithmic Problem solving

- Different symbolic representations:
 - Flow diagram (diagramma a blocchi)
 - Top-down, down-top

Natural language

- Another way to represent a problem
 - Top-down (decomposing the main problem in simple sub-problems)
 - Down-top (starting from the bottom)

Computational thinking

- Seymour Papert, 1996.
- The problem solving process is characterized by:
- Formulating problems to which a PC can give support
- Automation of solution through the algorithmic thinking

Topic 5

Other methodologies to solve and represent a problem

- Pyramid diagram
- Onion diagram
- Decision tree
- Also many others. Here are some:
 - Kaizen method (from quality control)
 - BPR (Business Process Reengineering)
 - Event Tree (event description)
 - Constraints Theory (cause-effect recognition)
 - etc. etc....

Event Trees

- Event Tree = representation of all the events which can happen in a business system
- Also used in other fields
- It allows to explore all the options that can happen

	Sprinkler System	Call to Fire Dept.	Outcome	Consequence
		Success	ок	1
Floor	Success	Failure	Partial Damage	2
Fire	-	Success	Partial Damage	2
	Failure	Failure	System Destroyed	3

Simple diagrams: Onion Diagram

- Concentric circles
- Each circle represents a process or a problem component depending from its internal circle
- In the centre we put the main concept (problem) that is the root.
- Advantage: it visualizes in a simple and efficient way a problem but it is not used in the detail phases of a problem (it is useful only in the initial phases of identification)

Simple diagrams: Tree Diagram

 It consists in decomposing (as in a classification) the problem in more simple sub-problems

Useful when there is an information hierarchy or a process

composed of many parts.

 Useful also to explain data structures or details in systems integrations.

Problem solving in your disciplines?

- Why you need to know problem solving principles and different related methodologies?
- This approach is necessary because is part of <u>multidisciplinary advanced</u> skills needed in international relationship involving Countries, international organizations or private companies. You need to know decision making, creative problem solving, algorithmic problem solving, project management.
- These are skills ever requested in this field

New perspective in problem solving

Prof. Raffaella FOLGIERI

DEAS, Dipartimento di Scienze Economiche, Aziendali e Statistiche

Brain Imaging technologies: EEG

- electroencephalography (EEG) measures the activity of neuron populations.
- EEG is non-invasive and relatively low cost.
- The electrodes measure on the scalp differences in voltage in microvolt (μV)

10-20 system: A, auricle; C, central; F, frontal; Fp, frontal pole; O, occipital; P, parietal; T, temporal.

New perspective in problem solving: the cognitive approach

The cognitive approach of individuals to problem solving become visible

TECHNOLOGICAL interested disciplines

- Artificial Intelligence
- Virtual Reality
- Game Design
- Web Science
- Digital Communication
- Machine Learning
- Robotics
- Bioinformatics
- Biotechnology
- User experience
- •

NON-TECHNOLOGICAL interested disciplines

- Communication
- Psychology
- Economics
- Marketing
- Decision Making
- Education
- Linguistic
- •

Brainomics and Problem Solving

- Possibility to
 - Investigate the brain mechanisms in problem solving... the brain in action!
 - Achieve a deep comprehension of the "human information processing"
 - measure thought, approaches and emotions

BCI = Brain Computer Interface

- Based on data (signals) from EEG
- Two kinds of BCI:
 - Invasive Technology
 - Electrodes implanted directly in the brain
 - Non-invasive technology
 - Sensors placed on headband

Signals registered from BCI

• Rhythms grouped by frequency (max 100µV)

Туре	Frequency	Location	Use
Delta	<4 Hz	everywhere	occur during sleep, coma
Theta	4-7 Hz	temporal and parietal	correlated with emotional stress (frustration & disappointment)
Alpha	8-12 Hz	occipital and parietal	reduce amplitude with sensory stimulation or mental imagery
Beta	12-36 Hz	parietal and frontal	can increase amplitude during intense mental activity
Mu	9-11 Hz	frontal (motor cortex)	diminishes with movement or intention of movement
Lambda	sharp, jagged	occipital	correlated with visual attention
Vertex			higher incidence in patients with epilepsy or encephalopathy

Non-invasive BCI: main models

Main commercial models:

- Emotiv Epoc
- Mindwave Neurosky

- Created for entertainment, games applications.
- Now used in research.
- Tool for development and research:
 - Data registration
 - Libraries for applications and interfaces
- They register signals which after need to be elaborated

